Urban runoff modelling uncertainty: Comparison among Bayesian and pseudo-Bayesian methods

نویسندگان

  • Gabriele Freni
  • Giorgio Mannina
  • Gaspare Viviani
چکیده

Urban stormwater quality modelling plays a central role in evaluation of the quality of the receiving water body. However, the complexity of the physical processes that must be simulated and the limited amount of data available for calibration may lead to high uncertainty in the model results. This study was conducted to assess modelling uncertainty associated with catchment surface pollution evaluation. Eight models were compared based on the results of a case study in which there was limited data available for calibration. Uncertainty analysis was then conducted using three different methods: the Bayesian Monte Carlo method, the GLUE pseudo-Bayesian method and the GLUE method revised by means of a formal distribution of residuals between the model and measured data (GLUE_f). The uncertainty assessment of the models enabled evaluation of the advantages and limitations of the three methodologies adopted. The models were then tested using the quantity–quality data gathered for the Fossolo catchment in Bologna, Italy. The results revealed that all of the models evaluated here provided good calibration results, even if the model reliability (in terms of related uncertainty) varied, which suggests the adoption of a specific modelling approach with respect to the others. Additionally, a comparison of uncertainty analysis approaches showed that, regarding the models evaluated here, the classical Bayesian method is more effective at discriminating models according to their uncertainty, but the GLUE approach performs similarly when it is based on the same founding assumptions as the Bayesian method. 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours

When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...

متن کامل

Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they...

متن کامل

Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis

Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...

متن کامل

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

Bayesian Approach for Uncertainty Analysis of an Urban Storm Water Model and its Applications to a Heavily Urbanized Watershed

The significance of uncertainty analysis (UA) to quantify reliability of model simulations is being recognized. Consequently, literature on parameter and predictive uncertainty assessment of water resources models has been rising. Applications dealing with urban drainage systems are, however, very limited. This study applies formal Bayesian approach for uncertainty analysis of a widely used sto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2009